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ABSTRACT 

The implementation of multiple Integrated 
Guidance and Control (IG&C) algorithms per flight 
phase within a vehicle simulation poses a daunting task 
to coordinate algorithm interactions with the other 
G&C components and with vehicle subsystems. 
Currently being developed by Universal Space Lines 
LLC (USL) under contract fiom NASA, the Integrated 
Development and Operations System (IDOS) contains 
a high fidelity Simulink vehicle simulation, which 
provides a means to test cutting edge G&C 
technologies. Combining the modularity of this 
vehicle simulation and Simulink’s built-in primitive 
blocks provide a quick way to implement algorithms. 
To add discrete-event functionality to the unfinished 
IDOS simulation, Vehicle Event Manager (VEM) and 
Integrated Vehicle Health Monitoring (IVHM) 
subsystems were created to provide discrete-event and 
pseudo-health monitoring processing capabilities. 

Matlab’s Stateflow is used to create the IVHM and 
Event Manager subsystems and to implement a 
supervisory logic controller referred to as the 
Autocommander as part of the IG&C to coordinate the 
control system adaptation and reconfiguration and to 
select the control and guidance algorithms for a given 
flight phase. Manual creation of the Stateflow charts 
for all of these subsystems is a tedious and time- 
consuming process. The Stateflow Autobuilder was 
developed as a Matlab based software tool for the 
automatic generation of a Stateflow chart fiom 
information contained in a database. This paper 
describes the IG&C, VEM and IVHM implementations 
in IDOS. In addition, this paper describes the 
Stateflow Autobuilder. 

INTRODUCTION 

In a robust, fault tolerant flight control system, a 
controller design that incorporates vehicle health 
status, sensor fidelity, and control effector limits is 
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crucial in order to maintain stability under adverse 
conditions. This, in part, involves monitoring and 
reacting to possibly hundreds of signals generated by . 
the vehicle health monitoring system in order to detect 
and react to failures. A system that undergoes 
adaptation or modification based upon discrete events 
is referred to as a hybrid system. 

Simulation of a system with continuous dynamics 
that are influenced by discrete events [l] such as 
failures is a necessary tool for the development of a 
hybrid control system. One simulation software 
package on the market is Matlab with Simulink and 
Stateflow developed by The Mathworks. 

Stateflow provides the capability within a 
Simulink model to implement supervisory logic that 
interprets system monitoring inputs so that a hybrid, 
adaptive control system can be developed and 
simulated. The Stateflow Autobuilder [2] software 
tool has been developed to generate working Stateflow 
charts fiom a Microsoft Access database or from an 
Excel spreadsheet. In the Microsoft Access format, a 
GUI provides a user-friendly interface for beginner 
level users to enter and maintain the database, and the 
Excel format allows advanced users to quickly build 
the database by using a spreadsheet format. 

The Stateflow Autobuilder supports a multi- 
university effort to develop integrated guidance and 
control technology for NASA’s second generation 
reusable launch vehicle that features a top-level 
supervisory controller referred to as the 
Autocommander [3]. The Stateflow Autobuilder can 
easily be adapted for more general use in discrete- 
event or hybrid flight control system design and 
simulation, such as implementing Vehicle Event 
Manager (VEM) and Integrated Vehicle Health 
Monitoring (IVHM) subsystems that are presented in 
this paper. 

Universal Space Lines (USL) has taken advantage 
of The Mathworks’ Simulink simulation package to 
create a generic simulation model that is loaded with 
specific vehicle parameters to form a high fidelity 



vehicle simulation. As different vehicle models arise, 
only the specific parameters for a given vehicle are 
loaded into Integrated Development and Operations 
Systems (IDOS) to create a new vehicle simulation. 
Once G&C algorithms have been implemented in 
IDOS, the modular implementation design inherent to 
Simulink models presented in this paper provides easy 
swapping out of modified or updated G&C 
components. 

Also presented in this paper are the results of 
adding Time Varying Bandwidth (TVB), which is one 
component of the fault tolerant flight control system. 
Time Varying Bandwidth is based upon singular 
perturbation theory [4]. The fast inner loop and the 
slow outer loop bandwidths should abide by the time 
scale separation principle in order to ensure stability. 
Upon receiving the TVB flag from the 
Autocommander, the controller appropriately scales 
back the bandwidths of both loops, which slows the 
controller and maintains the required time scale 
separation [5,6]. 

The implementation of the IG&C described in this 
paper occurred within less than 2 months. 

IDOS DESCRIPTION 

Integrated Development & Operations System 
(IDOS) is a software development environment for 
launch vehicle flight mechanics, which is currently 
under development by USL. IDOS consists of three 
components: IDOS Management System (IMS), Flight 
Control Software (FCSW -Figure 1) and Vehicle (and 
Environment) Simulation, and Real Time Test Bed 
(RTTB). 

Major components of IDOS are the Flight Control 
Software and Vehicle (and Environment) Simulation 
(FVS), implemented in a Simulink model. The FCSW 
portion of FVS is where the integrated guidance and 
control algorithms are implemented. The block- 
diagram structure of Simulink allows for easy 
implementation and development of these algorithms. 
Also, the capability of incorporating C and Fortran S- 
functions allows for fast implementation of pre- 
existing code. 

The IDOS Management System and Real Time 
Test Bed are currently being developedNby USL. These 
components are part of the complete IDOS software 
tool that will allow faster than real time and real time 
simulations. 

ALGORITHM IMPLEMENTATION 

The block diagram structure of Simulink enabled a 
very modular implementation of the guidance and 
control algorithms as shown in Figures 3 thru 5 .  The 
modularity was achieved by using subsystem blocks to 
form a hierarchal framework for the algorithms to 
reside in. This modularity provides an easy way to 
update individual algorithms, as well as compare 
different algorithms. 

The top level of this hierarchy contains the 
Navigation, Guidance, Control, and Autocommander 
subsystems, shown in Figure 2. These four subsystems 
are the key components of the integrated guidance, 
navigation and control (IGNC) algorithms. 

The next level of the hierarchy separates the five 
flight phases in the guidance and control subsystems, 
as shown in Figure 3 for the control subsystem. The 
guidance and control systems for each flight phase are 
contained within enabled subsystems. A signal fiom 
the Autocommander then enables the appropriate 
subsystem for simulation. 

This structure allows the user to make changes to 
different algorithms without affecting the rest of the 
simulation. As long as the input and output structure is 
maintained, old blocks can be cut out and new ones 
inserted. This provides an easy way to update the 
model as improvements to individual algorithms are 
made. 

The next level of the hierarchy further separates 
the algorithms into individual components. An 
example is shown in Figure 4, where the ascent 
controls block is separated into a controller block and a 
control allocation block. 

The separation of the control algorithms makes the 
model extremely modular, allowing very specific 
changes to be made without altering the rest of the 
simulation. It also enables multiple algorithms to be 
included within one model as shown in Figure 5 .  

If different algorithms exist for a single 
component, switching between algorithms is done by 
changing the value of an algorithm selection variable. 
This variable enables the subsystem that is desired to 
be used. Figure 5 shows the two types of controllers, 
Trajectory Linearization Control (TLC) and Sliding 
Mode Control (SMC), implemented in the same model. 
An initialization program is run prior to simulation 
where the user is prompted to choose the different 
algorithms. This allows different algorithms to be 
compared easily, with no modification to the 
simulation code. 
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Figure 2: The IG&C Subsystems. 
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Figure 3: Control system enabled subsystems for each flight phase, 

Figure 4: The controller and control allocation subsystems. 
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Figure 5: Choice of controller types: Sliding Mode Controller and Trajectory Linearization Controller. 

STATEFLOW SUBSYSTEMS 

In the past, creating a Stateflow chart for use in a 
Simulink simulation of a large-scale guidance and 
control system was a tedious and time-consuming 
process. Manual manipulation of Stateflow’s 
graphical user interface (GUI) was required to 
individually create elements of a Stateflow chart [7]. 
Moreover, updating a chart to reflect revisions posed 
a daunting task for a large system. An alternative 
solution to overcome these problems is to be able to 
automatically produce a Stateflow chart from a 
database. Managing the parameters and elements of 
a simulation via a database provides the ability to 
efficiently modify or update the simulation model by 
simply changing information within the database. 

The Autocommander, Vehicle Event Manager 
and IVHM subsystems use Stateflow charts. These 
charts are automatically generated from a 
spreadsheedtable database and inserted into the IDOS 
environment via the Stateflow Autobuilder software 
as describe in the following subsection. 

Stateflow 

Stateflow supports the execution of concurrent 
automata by setting the decomposition parameter of 

the chart to parallel. The states that are immediate 
children of this chart are referred to as AND 
(parallel) states, which are distinguished by dashed 
borders as shown in Figures 9 & 10. This is a 
particularly important feature of Stateflow that allows 
a chart to be separated into different automata. In 
Figures 9 & 10, there are two and three, respectively, 
separate automaton that operate concurrently. The 
traditional states of an automaton are called OR 
(exclusive) state, which have solid line borders. 

Another key feature of Stateflow is that when a 
transition occurs or while in a state (entry, during, 
exit and on event) actions can be implemented. 
Actions may consist of setting flags, calling 
Stateflow and Matlab functions, defining variables, 
and broadcast events, etc. 

Two different types of operators can trigger a 
transition from one state to another, an event 
broadcast or a valid logical expression. Labels of 
transitions may contain either one or both types of 
operators. The scope of an event dictates which 
Stateflow objects receives its broadcast, which 
triggers a transition. It can be an “Input from 
Simulink”, “Local” to a group of states, or “Output to 
Simulink”. The syntax of the logical expression is 
identical to an “if” statement in standard Matlab 
syntax with an exception of being encased within a 
square brackets. The data variables that are used 



within a transition’s logical expression or within a 
states action statement must be defined in the data 
dictionary of the chart. Data variables have a scope 
of c‘Local”, “Input from Simulink”, “Output to 
Simulink“, “Temporary,” or “Constant”. Either 
“Input from Sirnulink” or “Output to Simulink7’ scope 
for both events and data variables require connection 
of the Stateflow chart to the Simulink model. 

Stateflow Autobuilder 

The Autobuilder uses the Application 
Programming Interface (MI) of Stateflow 4.2 (and 
later) to automate the construction of a complete 
working chart. API only provides a way to insert 
Stateflow objects into a chart, but not the capability 
to automatically define a Stateflow object’s 
parameters, such as position, size, or the label of a 
state. Beyond the typical states, events and 
transitions that characterize automata, the 
Autobuilder creates data variables, junctions, 
functions (graphical or text) and the remaining 
Stateflow objects to allow users to utilize the full 
features of Stateflow in the development of a hybrid 
system. 

In addition to generating a Stateflow chart, 
wireless connection blocks (Goto and From blocks) 
are generated to provide a plug and play capability 
for the chart. Figure 11 shows a generated Stateflow 
chart and the wirelessly connected input and output 
ports that are generated by the Autobuilder. Within 
the Simulink model, there must be preexisting 
Goto/From blocks with tags that respectively match 
the tags of the generated GotoErom blocks to 
complete the “connection” that is normally made 
with a line. A tag is a label that defines the 
connection between a Goto block and a From block 
and vice-versa. The GotoErom blocks that are 
generated are tagged with the outputhnput variable or 
event name concatenated with the string “PORT”. 
For example, an output to Simulink variable that is 
named “inputl” would be connected to a Goto block 
with a tag of “inputlPORT”. Additionally, anywhere 
in the Simulink model that this variable value or 
signal is used would require a connection to a From 
block with a matching tag of “inputlPORT”. 

With an automaton in mind, the first task in 
generating a chart is to fill out the fields in the 
database. The first spreadsheeutable to be filled out 
is for the state information. Within this spreadsheet, 
the state’s name, parents name, entry action label, 

during action label, exit d o n  label, on event d o n  
label and the type (AND/OR) of state are the required 
information for generating states, which is shown 
Figure 6.  For transitions, the required information 
fields that are shown in Figure 7 are the transition’s 
label, source (name), and destination (name). For 
data variables the required fields are name, parent 
name, data scope, data type and initial value as 
shown in Figure 8. In a similar hhion, additional 
spreadsheets/tables are required to be filled out for 
events, functions, boxes, notes, and junctions. 

After the Stateflow Autobuilder program is 
executed, the resulting Stateflow chart is shown in 
Figure 11. The placement of the Stateflow chart 
block into a Simulink model is based upon the 
position of the chart block it is going to replace. To 
insert a new chart into a simulation, first a new chart 
must be copied and placed by the user from the 
Simulink block library. In addition, sufficient space 
must be available around the existing Simulink model 
prior to running the Autobuilder to allow proper 
placement and sizing of the Stateflow chart without 
overlay of other blocks. The graphical layouts of the 
states, sizes of the states as well as the paths of the 
transitions that are generated are organized in such a 
manner that the produced Stateflow chart is generally 
compact and easily readable. 

Vehicle Event Manager 

The addition of the Vehicle Event Manager 
(VEM) makes IDOS a powerful tool to simulate off- 
nominal flight scenarios that are associated with a 
discrete-event driven simulation. The ease of 
generating vehicle failures provides a method to test 
and validate G&C algorithms very quickly under 
various failure scenarios. Unlike other vehicle 
simulation, any possible failure scenario can be 
implemented and up-and-running in just a few 
minutes. 

In Excel spreadsheets, four parameters are to be 
entered per failure event, and any combination of 
failure events can form a failure scenario. The first 
parameter is the start time of a failure event. The 
second parameter is the end time of the event. The 
third parameter is the type of failure. Finally, the 
fourth parameter is a 0 to 1 scalar multiplier or a set 
point at which the component has failed, which is 
specific to the system and dependant on the type of 
failure. Currently, only one failure type can occur per 
component per simulation run. Eventually, the VEM 



capabilities will be extended by vectorizing the event 
parameters, which will allow multiple types of 
failures to occur at different times per failed 
component. 

A Matlab script file reads the Excel spreadsheet 
data and converts it into a text file. Within the 
Vehicle Event Manager subsystem, an S-hct ion 
reads the text data and inputs it into the VEM’s 
stateflow chart. 

Currently within the VEM’s Stateflow chart, 
there are 42 generic YES/NO (ON/OFF) events as 
shown in the upper AND superstate within Figure 9. 
These events only use the start and stop times to set a 
flag over the corresponding time interval. Also, there 

are 22 effector events that are comprised of 8 surface 
deflector failure events, 10 RCS thruster failure 
events, and 4 engine failure events as shown in the 
lower AND superstate in Figure 9. These events use 
start and stop times to represent effector failures over 
the corresponding time interval. The associated 
event type that is used to specify the failure mode 
are: l(nominal), 2 (reduced control authority), 3 (set 
at a position), and 4 (stuck at current position). The 
failure value specified in the fourth parameter 
dictates either a ‘set at’ position or a signal multiplier 
value between 0 and 1 (0% to 100%) to characterize 
remaining control authority. This parameter is not 
used for the stuck effector failure event. 

Figure 6: States’ Information Spreadsheet. 



Figure 9: Vehicle Event Manager Stateflow Chart. 

Figure 10: Autocommander Stateflow Diagram. 



Integrated Vehicle Health Monitor 

The IVHM subsystem block currently takes the 
flagdsignals from the Vehicle Event Manager 
subsystem block and individually adds a variable delay 
to each signal. This delay time is to represent time 
required by a real vehicle’s IVHM to process vehicle 
data and to diagnose any vehicle problems. Two 
different methods are used to achieve the variable 
delay. The first method uses a Stateflow chart to add 
delay for the 42 ON/OFF failure events. To 
accomplish the delay in the binary signal, the 
simulation time at which the signal from the Vehicle 
Event Manager becomes 1 is stored. The amount of 
delay is then added to this time and when the clock 
simulation time reaches this new summed value the 
Stateflow chart sets the corresponding output to 1. 
When the input signal from the Vehicle Event Manager 
goes back to 0, a similar approach is taken to add the 
delay. The second method to create the signal delay is 
to use a variable time transport delay block, which was 
used for the remaining 22 effector failure signals. The 
two inputs to this block are the delay time and the 
signal. Each signal requires a separate transport delay 
to have independent delays. 

Autocommander 

The Autocommander subsystem block is divided 
into four parts: input organizer, output organizer, 
Stateflow chart, and an algorithm section. 

Even with a preliminary implementation of our 
integrated G&C algorithms in IDOS, it is clear that 
data organization is required for efficiently handling 
I/O communication. A hierarchal data structure was 
created for the input and output organizer with the use 
of bus creator and bus selector Simulink Blocks. As an 
example of how the data is organized, for a signal 
named “signal” that is fed into a bus, “busl”, and in 
turn the bussed signal is fed into another bus, “bus2”, 
the data structure for the original signal would be 
“bus2.bus 1.signal”. 

A subsystem block in the Autocommander system 
contains the Autocommander Stateflow chart, the bus 
selection block to specify the inputs to the chart and a 
bus creation block to multiplex the chart’s output. 
Currently, the chart is divided into three sections 
(shown in Figure 10): Control Allocation (CA - top 
left), Time Varying Bandwidth (TVB - top right), and 
Flight Manager (FM - bottom). The CA section 

processes IVHM data and sends a Reduced Control 
Authority (RCA) flag to the G&C control allocation. 
The value of the RCA flag has a value between 0 and 1 
that is a scale of the percentage of remaining control 
authority with “0” being not operational. The TVB 
section sends a flag to the attitude control system. A 
TVB flag of 1 means that the commanded effector 
deflection is greater than the effector deflection limit; 
otherwise the TVB flag is 0. This flag causes the 
controller to adapt to effector saturation. The Flight 
Manager section sequences the flight phases and 
contains the baseline Nominal, Reconfigure and Abort 
structure of the Autocommander. In addition, ascent 
and entry flight phases each contain an algorithm 
sequencer that dictates the order and time of algorithm 
execution within the Autocommander’s Algorithm 
section shown in Figure 11. Currently, placeholder 
algorithms are used to send a completion flag to the 
Stateflow chart after 1 second of run time for each 
algorithm so that the algorithms are serially sequenced. 
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Figure 11: The Autocommander subsystems. 



SIMULATION RESULTS 

The following section presents a comparison of 
two ascent simulation runs with the same multiple 
surface effector failures. The simulation run without 
Time Varying Bandwidth (TVB) results are shown in 
Figures 12 thru 23, and the second run with TVB 
results are shown in Figures 24 thru 35. In both of 
these simulation runs, all eight surface effectors fail by 
50% near the time of lift off. In all the command 
verses actual plots, the blue solid line is the 
commanded response and the green dashed line is the 
actual (sensed) response. 

In theory, the TVB addition to the controller 
should provide greater stability during the mach 
regions and severe disturbances of flight than without 
TVB. Figure 36 and Figure 37 show the scaling back 
of the controller’s inner and outer loop bandwidths for 
the given example. Clearly, without the TVB the 
vehicle crashes as indicated by the altitude in Figure 12 
and by the system instability that are shown in Figures 
13 thru 15. Comparing the same plots for the 
simulation run with TVB, Figure 24 shows the vehicle 
making it to orbit and Figure 25 thru 27 shows the 
system stability, but with a poor tracking performance 
in the 100 to 200 second range. The TVB sacrifices 
tracking performance for stability as shown in this 
example. 

Figures 16 thru 23 and Figures 28 thru 35 show the 
commanded verses actual surface deflection angles for 
their corresponding simulation run. Both of these sets 
of figures show the 50% failure of all surface effectors 
from the beginning of the simulation, which verifies 
the actions of the Vehicle Event Manager, 
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Figure 13 : Commanded vs. actual yaw (deg.) 
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Figure 14: Commanded vs. actual pitch (deg.) 
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Figure 16: Commanded vs. actual left inboard elevon 
deflections (deg.) 
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Figure 17: Commanded vs. actual left 
deflections (deg.) 
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Figure 19: Commanded vs. actual left rudder deflections 

a 

Figure 20: Commanded vs. actual right inboard elevon 
deflections (de%) 

Figure 18: Commanded vs. actual left flap deflections 
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Figure 21: Commanded vs. actual right outboard elevon 
deflections (des) 



Tm. 
I 

Figure 22: Commanded vs. actual right flap deflections 
(des.) 
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Figure 23: Commanded vs. actual right rudder 
deflections (deg.) 
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Figure 25: Commanded vs. actual yaw 
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Figure 27: Commanded vs. actual roll 

Figure 24: Altitude (R) 



Figure 28: Commanded vs. actual left inboard elevon 
deflections (deg.) 
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Figure 30: Commanded vs. actual left flap deflections 
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Figure 32: Commanded vs. actual right inboard elevon 
deflections (deg.) 
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Figure 33 : Commanded vs. actual right inboard elevon 
deflections (des) 
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Figure 37: Outer loop bandwidth for the simulation run 
with TVB. 
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CONCLUDING REMARKS 

The implementation of IG&C algorithms into a 
high fidelity Simulink vehicle simulation, such as 
IDOS's flight control s o h a r e  (FCSW), is a fhr less 
cumbersome process than implementing algorithms 
within traditional hard coded simulations. The 
modularity of the IG&C portion of the simulation 
model allows users to easily interchange algorithms 
with little additional effort. Signal traceability and 
analysis cabilities of Simulink provide a user a time 
saving and a confidence building way of verifying and 
testing new G&C algorithms. 
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